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• There is to be no collaboration on any aspect of developing and presenting your proof. Your only
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“It is by logic that we prove but by intuition that we discover.” (Henri Poincaré)

SLE-2 (Section VO) Let A be an m × n matrix and LS
(
A,~0

)
be the corresponding homogeneous linear

system of equations. Let ~b be a constant vector for which the linear system LS
(
A,~b

)
is consistent. Denote

the solution set of LS
(
A,~b

)
by S and, since LS

(
A,~b

)
is consistent, we know there is a specific vector

~β =


β1

β2
...
βn

 ∈ S. Let T =




y1 + β1

y2 + β2
...

yn + βn

 ∈ Cn :


y1

y2
...
yn

 ∈ N (A)

 .

1. Prove S = T.

Use the specific notation: [A]ij = αij , 1 ≤ i ≤ m, 1 ≤ j ≤ n and recall that N (A) is the null space of A.
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